16 research outputs found

    On the periodic motions of simple hopping robots

    Get PDF
    Discrete dynamical systems theory is applied to the analysis of simplified hopping robot models. A one-dimensional vertical hopping model that captures both the vertical hopping dynamics and nonlinear control algorithm is reviewed. A more complicated two-dimensional model that includes both forward and vertical hopping dynamics and a foot placement algorithm is presented. These systems are analyzed using a Poincare return map and hopping behavior is investigated by constructing the return map bifurcation diagrams with respect to system parameters. The diagrams show period doubling leading to chaotic behavior. Using the vertical model results as a guide, dynamic behaviour of the planar hopping system is interpreted

    On the periodic motions of simple hopping robots

    Get PDF
    Discrete dynamical systems theory is applied to the analysis of simplified hopping robot models. A one-dimensional vertical hopping model that captures both the vertical hopping dynamics and nonlinear control algorithm is reviewed. A more complicated two-dimensional model that includes both forward and vertical hopping dynamics and a foot placement algorithm is presented. These systems are analyzed using a Poincare return map and hopping behavior is investigated by constructing the return map bifurcation diagrams with respect to system parameters. The diagrams show period doubling leading to chaotic behavior. Using the vertical model results as a guide, dynamic behaviour of the planar hopping system is interpreted

    The actively controlled jet in crossflow

    No full text

    The Use of Complex Coordinate for Identifying Flywheel Energy Storage System

    No full text

    A Study of the Formation and Scaling of a Synthetic Jet

    No full text

    Vorticity Formulation for an Actuated Jet in Crossflow

    No full text
    corecore